An if/then construct tests whether the exit status of a list of commands is 0 (since 0 means "success" by UNIX convention), and if so, executes one or more commands.
There exists a dedicated command called [ (left bracket special character). It is a synonym for test, and a builtin for efficiency reasons. This command considers its arguments as comparison expressions or file tests and returns an exit status corresponding to the result of the comparison (0 for true, 1 for false).
With version 2.02, Bash introduced the [[ ... ]] extended test command, which performs comparisons in a manner more familiar to programmers from other languages. Note that [[ is a keyword, not a command.
Bash sees [[ $a -lt $b ]] as a single element, which returns an exit status.
The (( ... )) and let ... constructs return an exit status, according to whether the arithmetic expressions they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be used to perform arithmetic comparisons.
(( 0 && 1 )) # Logical AND
echo $? # 1 ***
# And so ...
let "num = (( 0 && 1 ))"
echo $num # 0
# But ...
let "num = (( 0 && 1 ))"
echo $? # 1 ***
(( 200 || 11 )) # Logical OR
echo $? # 0 ***
# ...
let "num = (( 200 || 11 ))"
echo $num # 1
let "num = (( 200 || 11 ))"
echo $? # 0 ***
(( 200 | 11 )) # Bitwise OR
echo $? # 0 ***
# ...
let "num = (( 200 | 11 ))"
echo $num # 203
let "num = (( 200 | 11 ))"
echo $? # 0 ***
# The "let" construct returns the same exit status
#+ as the double-parentheses arithmetic expansion.
|
An if can test any command, not just conditions enclosed within brackets.
if cmp a b &> /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."
fi
# The very useful "if-grep" construct:
# -----------------------------------
if grep -q Bash file
then echo "File contains at least one occurrence of Bash."
fi
word=Linux
letter_sequence=inu
if echo "$word" | grep -q "$letter_sequence"
# The "-q" option to grep suppresses output.
then
echo "$letter_sequence found in $word"
else
echo "$letter_sequence not found in $word"
fi
if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
then echo "Command succeeded."
else echo "Command failed."
fi
|
These last two examples courtesy of Stephane Chazelas.
Example 7-1. What is truth?
#!/bin/bash
# Tip:
# If you're unsure how a certain condition might evaluate,
#+ test it in an if-test.
echo
echo "Testing \"0\""
if [ 0 ] # zero
then
echo "0 is true."
else # Or else ...
echo "0 is false."
fi # 0 is true.
echo
echo "Testing \"1\""
if [ 1 ] # one
then
echo "1 is true."
else
echo "1 is false."
fi # 1 is true.
echo
echo "Testing \"-1\""
if [ -1 ] # minus one
then
echo "-1 is true."
else
echo "-1 is false."
fi # -1 is true.
echo
echo "Testing \"NULL\""
if [ ] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo
echo "Testing \"xyz\""
if [ xyz ] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo
echo "Testing \"\$xyz\""
if [ $xyz ] # Tests if $xyz is null, but...
# it's only an uninitialized variable.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
echo "Testing \"-n \$xyz\""
if [ -n "$xyz" ] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
xyz= # Initialized, but set to null value.
echo "Testing \"-n \$xyz\""
if [ -n "$xyz" ]
then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.
echo
# When is "false" true?
echo "Testing \"false\""
if [ "false" ] # It seems that "false" is just a string ...
then
echo "\"false\" is true." #+ and it tests true.
else
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\$false\"" # Again, uninitialized variable.
if [ "$false" ]
then
echo "\"\$false\" is true."
else
echo "\"\$false\" is false."
fi # "$false" is false.
# Now, we get the expected result.
# What would happen if we tested the uninitialized variable "$true"?
echo
exit 0
|
Exercise. Explain the behavior of Example 7-1, above.
if [ condition-true ]
then
command 1
command 2
...
else # Or else ...
# Adds default code block executing if original condition tests false.
command 3
command 4
...
fi
|
When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if and then are keywords. Keywords (or commands) begin statements, and before a new statement on the same line begins, the old one must terminate.
|
elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.
if [ condition1 ]
then
command1
command2
command3
elif [ condition2 ]
# Same as else if
then
command4
command5
else
default-command
fi
|
The if test condition-true construct is the exact equivalent of if [ condition-true ]. As it happens, the left bracket, [ , is a token [1] which invokes the test command. The closing right bracket, ] , in an if/test should not therefore be strictly necessary, however newer versions of Bash require it.
The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package. Likewise, [ does not call /usr/bin/[, which is linked to /usr/bin/test.
If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full pathname. |
Example 7-2. Equivalence of test, /usr/bin/test, [ ], and /usr/bin/[
#!/bin/bash
echo
if test -z "$1"
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if /usr/bin/test -z "$1" # Equivalent to "test" builtin.
# ^^^^^^^^^^^^^ # Specifying full pathname.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if [ -z "$1" ] # Functionally identical to above code blocks.
# if [ -z "$1" should work, but...
#+ Bash responds to a missing close-bracket with an error message.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if /usr/bin/[ -z "$1" ] # Again, functionally identical to above.
# if /usr/bin/[ -z "$1" # Works, but gives an error message.
# # Note:
# This has been fixed in Bash, version 3.x.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
exit 0
|
Following an if, neither the test command nor the test brackets ( [ ] or [[ ]] ) are strictly necessary.
Similarly, a condition within test brackets may stand alone without an if, when used in combination with a list construct.
|
The (( )) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in marked contrast to using the test and [ ] constructs previously discussed.
Example 7-3. Arithmetic Tests using (( ))
#!/bin/bash
# arith-tests.sh
# Arithmetic tests.
# The (( ... )) construct evaluates and tests numerical expressions.
# Exit status opposite from [ ... ] construct!
(( 0 ))
echo "Exit status of \"(( 0 ))\" is $?." # 1
(( 1 ))
echo "Exit status of \"(( 1 ))\" is $?." # 0
(( 5 > 4 )) # true
echo "Exit status of \"(( 5 > 4 ))\" is $?." # 0
(( 5 > 9 )) # false
echo "Exit status of \"(( 5 > 9 ))\" is $?." # 1
(( 5 == 5 )) # true
echo "Exit status of \"(( 5 == 5 ))\" is $?." # 0
# (( 5 = 5 )) gives an error message.
(( 5 - 5 )) # 0
echo "Exit status of \"(( 5 - 5 ))\" is $?." # 1
(( 5 / 4 )) # Division o.k.
echo "Exit status of \"(( 5 / 4 ))\" is $?." # 0
(( 1 / 2 )) # Division result < 1.
echo "Exit status of \"(( 1 / 2 ))\" is $?." # Rounded off to 0.
# 1
(( 1 / 0 )) 2>/dev/null # Illegal division by 0.
# ^^^^^^^^^^^
echo "Exit status of \"(( 1 / 0 ))\" is $?." # 1
# What effect does the "2>/dev/null" have?
# What would happen if it were removed?
# Try removing it, then rerunning the script.
# ======================================= #
# (( ... )) also useful in an if-then test.
var1=5
var2=4
if (( var1 > var2 ))
then #^ ^ Note: Not $var1, $var2. Why?
echo "$var1 is greater than $var2"
fi # 5 is greater than 4
exit 0
|
[1] |
A token is a symbol or short string with a special meaning attached to it (a meta-meaning). In Bash, certain tokens, such as [ and . (dot-command), may expand to keywords and commands. |